201114

M. Sc. (Third Semester) Examination, Dec. 2021

(For Regular/ATKT/Ex. Students)

MATHEMATICS

(Integration Theory-I)

Time Allowed: Three hours

Maximum Marks: 42

Note: Attempt all questions. Marks are distributed against the sections.

Section-'A'

(Objective Type Questions) 7×1=7

Note: Attempt all questions. Each question carries

1 mark.

201114 PTO

https://www.mcbuonline.com

- 1. Choose the correct answer:
 - i) The Lebesgue measure on [0,1] is a:
 - (a) σ-finite measure
 - (b) Finite measure
 - (c) Infinite measure
 - (d) None of the above
 - (ii) Each σ-finite measure is a
 - (a) Signed measure
 - (b) Semifinite
 - (c) Monotonic
 - (d) None of the above
 - (iii) If μ and ν are signed measures such that ν is both absolutely continuous and singular with repsect to μ , then $\nu = \dots$.
 - (a) -1
 - (b) 1
 - (c) ∞
 - (d) 0

201114 https://www.mcbuonline.com (iv) If f is a measureable function, then:

(a) Its positive part and negative part is measurable.

- (b) Only positive part is measurable
- (c) Only negative part is measurable
- (d) None of the above

Give True / False:

(v) Let (X, M, μ) be a measurable space then $\mu(A) \leq \mu(B)$.

(True/False)

- (vi) A step function is not a measureable function.

 (True/False)
- (vii) Hahn Decomposition is not unique.

(True/False)

Section-'B'

(Short Answer Type Questions) 5×2=10

Note: Attempt all five questions. Each question carries 2 marks.

2. Give the formal definition of measureable set A. And prove that if $\mu^*(E) = 0$, then E is Lebesgue measurable.

Or

Show that the union of two measureable sets is also measureable.

3. Show that each σ -finite measure is saturated.

Or

Define σ -finite and semi finite measurable.

4. Define comptetion, measure and prove that an open set in a metric space is measurable.

Or

Show that, if f is a measurable function, then |f| is also measurable but converse is not true.

5. Let μ be a signal measure and $\langle E_n \rangle$ be a disjoint sequence of measurable sets such that

$$\left|\mu\left(\bigcup_{n=1}^{\infty}E_{n}\right)\right|<\infty$$

then prove that the series

$$\sum_{n=1}^{\infty} \mu\left(E_n\right)$$

is absolutely convergent.

Or

Define signed measure.

6. Define positive and negative set.

Or

Define Total Variation and Mutually Singular measure.

Section-'C'

(Long Answer Type Questions) 5×5=25

Note: Attempt all questions. Each question carries 5 marks.

201114

PIO

https://www.mcbuonline.com

7. Let $(X_n M, \mu)$ be a measure space. If $E_i \in M$, $\mu(E_i) < \infty$ and $E_i \supset E_{i+1}$, then prove that $\mu\left(\bigcap_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} \mu(E_n)$.

· Or-

Prove that the union of finite number of measurable sets is also measurable.

8. Show that a function is meaurable iff its positive and negative parts are measurable.

Or

- * Define σ-Algebra and outer measure. Prove that the class of measureable sets is a σ-ring.
- 9. Let C be a constant and f and g are two measurable real valued functions defined on the same domain. Then show that f+g, $f\cdot g$, g-f and if are also measurable. https://www.mcbuonline.com

0r

Show that a function is measurable if and only if the set $\{x: f(x) < r\}$ is measurable for every rational number.

10. Show that the signed measure v is finite only if |v| is finite.

Or

State and prove Hahn's Decomposition theorem.

11. State and prove Jorden decomposition theorem.

Or

Define variation of signed measure. If E and F are measurable set and μ is signed measurd such that $E \subset F$ and $|\mu(f)| < \infty$, then show that $|\mu(E)| < \infty$.

https://www.mcbuonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से