AD-617(A)

M. Sc. (Third Semester) Special Examination, 2019

(For Regular/ATKT Students)

MATHEMATICS

(Operations Research-I)

Time Allowed: Three hours

Maximum Marks: 42

Note: All section as directed.

Section-'A'

(Objective Type Questions)

 $7 \times 1 = 7$

Note: Attempt all questions. Each questions carries

1 marks.

AD-617(A)

PTO

https://www.mcbuonline.com

- 1. Choose the correct answer:
 - (ii) The first country to use Operation Research to solve problem is:
 - (a) India
 - (b) China
 - (c) U. K.
 - (d) U.S.A.
 - (ii) While solving LP model graphically the area bounded by the constraints is called:
 - (a) Unbounded solution
 - (b) Feasible solution
 - (c) Infeasible region
 - (d) None
 - (iii) The key column indicates:
 - (a) Incoming vector
 - (b) Outgoing vector
 - (c) Cross vector
 - (d) None

AD-617(A) https://www.mcbuonline.com

(iv)	To convert	≤	type	of	inequality	into	equations	we
	have:							

- (a) add slack variables
- (b) add surplus variables
- (c) subtract slack variables -
- (d) subtract surplus variables
- When the elements of net evaluation row of simplex tables are equal the situation is known as:
 - (a) Tie
 - (b) Degeneracy
 - (c) Break
 - (d) None
 - Dual of the dual is:
 - (a) Equal
 - (b) Primal .
 - (c) Primal dual
 - (d) Dual
 - (vii) If the primal has an unbounded solution then the dual has :
 - (a) Optimal solution

PTO

- (b) No solution
- (c) Bounded solution
- (d) None

Section-'B'

(Short Answer Type Questions) $5 \times 2 = 10$

Note: Attempt all five questions. One question from each unit is compulsory. Each question carries 2 marks.

Unit-I

2. Write the four definitions of Operations Research.

Or

Write the origin and development of OR.

Unit-H

3. Write the limitation of OR.

()r

Write the advantages of OR

Unit-HI

AD-617(A)

https://www.mcbuonline.com

AD-617(A)

https://www.mcbuonline.com

Write the mathematical formulation of linear programming problem.

Or

Write the matrix form of Linear programming problem.

Unit-IV

Define slack variables, surplus variable and feasible solution.

Or

What do you understand by degeneracy. Explain.

Unit-V

6. What is the difference between dual and primal problem.

Or

Write the dual of the following linear programming problem

Maximize
$$Z = x_1 - 2x_2 + x_3$$

Subject to the constraints:

$$2 x_1 + x_2 - x_3 \le 2$$

$$2 x_1 - x_2 + 5 x_3 \le 6$$

$$4x_1 + x_2 + x_3 \le 6$$

and $x_1, x_2, x_3 \ge 0$

PTO

AD-617(A)

https://www.mcbuonline.com

Section-'C'

(Long Answer Type Question)

5×5=25

Note: Attempt all five questions. One question from each unit is compulsory. Each question carries 5 marks.

Unit-I

7. Write the scopes of Operation Research in different field.

Or

Explain main characteristics of Operation Research.

Unit-II

8. Write the different types of models in OR. Write the general method for solving these OR models.

Or

Explain difference phases of Operations Research.

Unit-III

9. Solve graphically:

Minimize $Z = 6 x_1 + 14 x_2$

AD-617(A)

https://www.mcbuonline.com

$$5x_1 + 4x_2 \ge 60$$

$$3x_1 + 7x_2 \le 84$$

$$x_1 + 2 x_2 \ge 18$$

$$x_1, x_2 \ge 0$$

Or

Solve the following Linear Programming problem graphically:

Maximize
$$Z = 5 x_1 + 7 x_2$$

Subject to the constraints:

$$x_1 + x_2 \le 4$$

$$3x_1 + 8x_2 \le 24$$

$$10 x_1 + 7 x_2 \le 35$$

$$x_1,x_2\geq 0$$

Unit-IV

10. Solve by Big M method:

AD-617(A)

PTO

https://www.mcbuonline.com

Minimize $Z = -3 x_1 + x_2$

Subject to the constraints:

$$2x_1 + x_2 \ge 2$$

$$x_1 + 3 x_2 \le 2$$

$$x_2 \le 4 \qquad x_1, x_2 \ge 0$$

Or

Solve by simplex method:

Maximize
$$Z = 3 x_1 + 2 x_2$$

Subject to the constraints:

$$x_1 + x_2 \le 4$$

$$x_1 - x_2 \le 2$$

$$x_1 \ge 0, x_2 \ge 0$$

Unit-V

11. State and prove weak duality theorem.

Or 🌽

By the use of principle of duality. Solve the following linear programming problem:

AD-617(A)

https://www.mcbuonline.com

Maximize

$$Z=4x_1+2x_2$$

Subject to the constraints:

$$-x_1-x_2 \le -3$$

$$-x_1+x_2 \le -2$$

$$x_1, x_2 \ge 0$$

https://www.mcbuonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स क्षजे और 10 रूपये पाये, Paytm or Google Pay से

200]

AD-617(A)