Roll No. Printed Pages: 3

PG-20416

TERM END EXAMINATION – 2020 M. Sc. FINAL YEAR MATHEMATICS

Integral Transforms with Applications

[Maximum Marks: 70

Note: Time – According to University Timing.

All questions are compulsory. All questions carry equal marks.

1. (a) Write the first shifting property of Laplace transform. Hence show that if $L\left\{F(t)\right\}=\frac{1}{p}\;e^{-1/p}\quad \text{then}$

$$L\left\{e^{t}F(3t)\right\} = \frac{e^{-3/_{(p-1)}}}{_{(p-1)}}$$

(b) If $L^{-1}\left\{\frac{p}{(p^2+1)^2}\right\} = \frac{1}{2}t$ sint,

then find
$$L^{-1}\left\{\frac{18p}{(9p^2+1)^2}\right\}$$
 [7]

OR

(a) Define convolution of two functions F(t) and G(t) of class A. Show that convolution of F(t) and G(t) is

$$L^{-1}\{f(p),g(p)\}\$$
where $L^{-1}\{f(p)\}=F(t)\$ and $L^{-1}\{g(p)\}=G(t)$

(b) Write Heaviside expansion formula.

2.	(a)	Using Laplace transform solve	
		$(D + 1)^2y = t$ given that $y = -3$ when $t = 0$ and $y = -1$ when $t = 1$.	[7]
	(b)	Solve	
		(D - 2) x + 3y = 0	
		2x + (D - 1) y = 0	
		Where $x(0) = 8$ and $y(0) = 3$	[7]
		<u>OR</u>	
	(a)	State and prove Abel's Integral equation.	
	(b)	Solve the integral equation using Laplace transform -	
		$F(t) = t^2 + \int_0^t F(u) \cdot \sin(t - u) du$	
3.	(a)	Find the Fourier sine transform of $\frac{e^{-ax}}{x}$. Hence find Fourier sine transform	form
		of $\frac{1}{x}$.	[7]
	(b)	Use the Fourier sine inversion formula to obtain $f(x)$, if	
		$\tilde{f}_s(p) = \frac{p}{1+p^2}$	[7]
		<u>OR</u>	
	(a)	Using Parseval's identity, prove that	
		(i) $\int_0^\infty \frac{ds}{(s^2+1)^2} = \frac{\pi}{4}$	
		(ii) $\int_0^\infty \frac{s^2}{(s^2+1)^2} ds = \frac{\pi}{4}$	
	(b)	Find the finite sine transform of $f(x) = \cos Kx$	
4.	(a)	Write the Elementary properties of the Henkel Transform.	[7]
	(b)	Prove:	[7]
		$M\left[\int_{0}^{x} f(u)du: p\right] = \frac{-1}{p}, f*(p+1)$	

OR

- (a) Write the relation between Fourier and Hankel transform.
- (b) Find the Hankel transform of

$$f(x) = \begin{cases} a^2 + x^2 & \text{, } 0 < x < a & n = 0 \\ 0 & \text{, } x > a & n = 0 \end{cases}$$

5. (a) A tightly stretched string with fixed end points x = 0 and $x = \ell$ is initially in a position given by $y = y_0 \sin^3 \left(\frac{\pi x}{\ell}\right)$.

If it is released from rest from this position, find the displacement y(x, t). [7]

(b) Write one dimensional heat conduction equation with example. [7]

<u>OR</u>

(a) By the use of Fourier transform solve the equation-

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

Under the condition

$$u = 0$$
 at $x = 0$

$$u = \begin{cases} 1 & , 0 < x < 1 \\ 0 & , x \ge 1 \end{cases}$$

When t = 0

and u is bounded.

(b) Find the solution of the equation-

$$\frac{\partial u}{\partial t} = K \frac{\partial^2 u}{\partial x^2}$$

Which tends to 0 (zero) as $x\rightarrow \infty$ and which satisfies the condition

$$u = f(t)$$
 when $x = 0$, $t > 0$

and u = 0 when x > 0, t = 0.

.....XX.....