PG-20416

TERM END EXAMINATION - 2020
 M. Sc. FINAL YEAR
 MATHEMATICS
 Integral Transforms with Applications

[Maximum Marks: 70

Note : Time - According to University Timing.
All questions are compulsory. All questions carry equal marks.

1. (a) Write the first shifting property of Laplace transform. Hence show that if $\mathrm{L}\{\mathrm{F}(\mathrm{t})\}=\frac{1}{\mathrm{p}} \mathrm{e}^{-1 / \mathrm{p}}$ then
$\mathrm{L}\left\{\mathrm{e}^{\mathrm{t}} \mathrm{F}(3 \mathrm{t})\right\}=\frac{\mathrm{e}^{-3 /(\mathrm{p}-1)}}{(\mathrm{p}-1)}$
(b) If $\mathrm{L}^{-1}\left\{\frac{\mathrm{p}}{\left(\mathrm{p}^{2}+1\right)^{2}}\right\}=\frac{1}{2} \mathrm{t}$ sint,
then find $\mathrm{L}^{-1}\left\{\frac{18 \mathrm{p}}{\left(9 \mathrm{p}^{2}+1\right)^{2}}\right\}$

OR

(a) Define convolution of two functions $F(t)$ and $G(t)$ of class A. Show that convolution of $F(t)$ and $G(t)$ is
$\mathrm{L}^{-1}\{\mathrm{f}(\mathrm{p}) . \mathrm{g}(\mathrm{p})\}$ where $\mathrm{L}^{-1}\{\mathrm{f}(\mathrm{p})\}=\mathrm{F}(\mathrm{t})$ and $\mathrm{L}^{-1}\{\mathrm{~g}(\mathrm{p})\}=\mathrm{G}(\mathrm{t})$
(b) Write Heaviside expansion formula.
2. (a) Using Laplace transform solve
$(D+1)^{2} y=t$ given that $y=-3$ when $t=0$ and $y=-1$ when $t=1$.
(b) Solve
(D-2) $x+3 y=0$
$2 x+(D-1) y=0$
Where $x(0)=8$ and $y(0)=3$

OR

(a) State and prove Abel's Integral equation.
(b) Solve the integral equation using Laplace transform -
$\mathrm{F}(\mathrm{t})=\mathrm{t}^{2}+\int_{0}^{\mathrm{t}} \mathrm{F}(\mathrm{u}) \cdot \sin (\mathrm{t}-\mathrm{u}) \mathrm{du}$
3. (a) Find the Fourier sine transform of $\frac{e^{-a x}}{x}$. Hence find Fourier sine transform of $\frac{1}{x}$.
(b) Use the Fourier sine inversion formula to obtain $\mathrm{f}(\mathrm{x})$, if

$$
\begin{equation*}
\tilde{f}_{s}(p)=\frac{p}{1+p^{2}} \tag{7}
\end{equation*}
$$

OR

(a) Using Parseval's identity, prove that
(i) $\quad \int_{0}^{\infty} \frac{\mathrm{ds}}{\left(s^{2}+1\right)^{2}}=\frac{\pi}{4}$
(ii) $\quad \int_{0}^{\infty} \frac{s^{2}}{\left(s^{2}+1\right)^{2}} \mathrm{ds}=\frac{\pi}{4}$
(b) Find the finite sine transform of $f(x)=\cos K x$
4. (a) Write the Elementary properties of the Henkel Transform.
(b) Prove:
$M\left[\int_{0}^{x} f(u) d u: p\right]=\frac{-1}{p}, f *(p+1)$

OR

(a) Write the relation between Fourier and Hankel transform.
(b) Find the Hankel transform of

$$
f(x)=\left\{\begin{array}{cll}
a^{2}+x^{2}, & 0<x<a & n=0 \\
0 & , x>a & n=0
\end{array}\right.
$$

5. (a) A tightly stretched string with fixed end points $x=0$ and $x=\ell$ is initially in a position given by $y=y_{0} \sin ^{3}\left(\frac{\pi x}{\ell}\right)$.
If it is released from rest from this position, find the displacement $y(x, t)$.
(b) Write one dimensional heat conduction equation with example.

OR

(a) By the use of Fourier transform solve the equation-
$\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}$
Under the condition
$\mathrm{u}=0$ at $\mathrm{x}=0$
$u= \begin{cases}1 & , 0<x<1 \\ 0 & , x \geq 1\end{cases}$
When $t=0$
and u is bounded.
(b) Find the solution of the equation-
$\frac{\partial u}{\partial \mathrm{t}}=\mathrm{K} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}$
Which tends to 0 (zero) as $x \rightarrow \infty$ and which satisfies the condition
$u=f(t)$ when $x=0, t>0$
and $u=0$ when $x>0, t=0$.
.XX.

