PG-20413

TERM END EXAMINATION - 2020
 M. Sc. FINAL YEAR
 MATHEMATICS
 Integration Theory and Functional Analysis

[Maximum Marks: 70

Note : Time - According to University Timing.
All questions are compulsory. All question carry equal marks.

1. (a) Let F be a closed subset of X. Then F is a locally compact Hausdorff space and the Baire sets of F are those sets of the form $B \cap F$, where B is a Baire set in X. Thus if F is a closed Baire set, the Baire subsets of F are just those Baire subsets of X which are contained in F. Prove that the Borel sets of F are those Borel sets of X which are contained in F.

OR

(b) Explain continuous functions with compact support with example.

OR

(c) Let μ be a finite measure defined on a σ-algebra M which contains all the Baire sets of a locally compact space X. If μ is inner regular, then prove that it is regular.
2. (a) State and prove Radon-Nikodym Theorem.

OR

(b) State and prove Riesz Representation theorem.

OR

(c) State and prove Fubini's Theorem.
3. (a) Prove that every normed linear space X is isomorphic to a linear manifold in the second conjugate space $X^{* *}$.

OR

(b) Explain Quotient space of a normed linear space with example.

OR

(c) State and prove uniform boundedness principle.
4. (a) State and prove Hahn-Banach theorem for complex linear space.

OR

(b) Show that a normed linear space is locally compact iff it is finite dimensional.

OR

(c) Show that if a normed space X is reflexive, then it is complete.
5. (a) Let X be an inner product space and $x, y \in X$, then prove

$$
|<x, y>| \leq\|x\|\|y\|
$$

OR

(b) Prove that an operator T on a Hilbert space H can be uniquely expressed as $T=A+i B$, where A, B are self adjoint operator on X.

OR

(c) State and prove Paseval's identity. . XX .

