Roll No. Printed Pages: 3

PG-20415

TERM END EXAMINATION – 2020 M. Sc. FINAL YEAR

MATHEMATICS

Operation Research

[Maximum Marks: 70

Note: Time – According to University Timing.

All questions are compulsory. All questions carry equal marks.

1. (a) Using Simplex method:

[7]

Max.
$$Z = 3x_1 + 2x_2 + 5x_3$$
,

Subject to the constraints:

$$x_1 + 2x_2 + x_3 \le 430$$

$$3x_1 + 2x_3 \le 460$$

$$x_1 + 4x_2 \le 420$$
 and $x_1, x_2, x_3 \ge 0$

<u>OR</u>

Discuss about, Phases or Methodology of operations research and classification of models.

(b) Construct the dual of following LPP:

[7]

Minimize
$$Z = x_1 + x_2 + x_3$$

Subject to:

$$x_1 + 2x_2 \ge 20$$

$$3x_1 + 2x_2 \ge 50$$

Where x_1 and x_2 are non-negative integers.

OR

Apply the principle of duality to solve the LPP:

Max.
$$Z = 3x_1 - 2x_2$$

Subject to

$$x_1 + x_2 \le 5$$
,

$$x_1 \le 4$$
, $1 \le x_2 \le 6$ and $x_1, x_2 \ge 0$.

2. Any two: [2×7=14]

(a) Solve the following transformation problem to maximize the profit:

Destinations

- (b) What is PERT and CPM? Also compare how they are different?
- (c) Explain Transportation Problems and Assignment Problems in short.

 Also differentiate them.
- **3.** Solve any two parts:

 $[2 \times 7 = 14]$

(a) Solve the following LPP using dynamic programming-

Maximize
$$Z = 3x_1 + 4x_2$$

Subject to:

$$2x_1 + x_2 \ge 40$$

$$2x_1 + 5x_2 \le 180$$

Where $x_1, x_2 \ge 0$

(b) Solve the following game-

Player A
$$\begin{bmatrix} A_1 & B_1 & B_2 \\ A_2 & 3 & 5 \\ 4 & 1 \end{bmatrix}$$

(c) By using dynamic programming, solve the following problem:

Minimize
$$u_1^2 + u_2^2 + u_3^2$$

Subject to
$$u_1 + u_2 + u_3 = 10$$

And $u_1, u_2, u_3 \ge 0$.

4. Solve any two:

 $[2 \times 7 = 14]$

- (a) Discuss simulation with terminology steps and advantages.
- (b) Discuss advantages and limitations of integer programming.
- (c) Solve the following integer programming problem by using branch and bound method:

Minimize
$$Z = 3x_1 + 2.5x_2$$

Subject to

$$x_1 + 2x_2 \ge 20$$

$$3x_1 + 2x_2 \ge 50$$

Where integers, $x_1, x_2 \ge 0$

5. Solve any two:

 $[2 \times 7 = 14]$

- (a) Discuss the difference in between Linear programming problem and Non-linear programming problem.
- (b) Explain about classification of non-linear programming problem.
- (c) Find the extreme value of

$$z = f(x_1, x_2) = 2x_1x_2$$

Subject to:
$$x_1^2 + x_2^2 = 1$$

