PG-20415

TERM END EXAMINATION - 2020
 M. Sc. FINAL YEAR
 MATHEMATICS
 Operation Research

[Maximum Marks: 70

Note : Time - According to University Timing.
All questions are compulsory. All questions carry equal marks.

1. (a) Using Simplex method:

Max. $Z=3 x_{1}+2 x_{2}+5 x_{3}$,
Subject to the constraints:

$$
\begin{aligned}
& x_{1}+2 x_{2}+x_{3} \leq 430 \\
& 3 x_{1}+2 x_{3} \leq 460 \\
& x_{1}+4 x_{2} \leq 420 \text { and } x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

OR
Discuss about, Phases or Methodology of operations research and classification of models.
(b) Construct the dual of following LPP:

Minimize $Z=x_{1}+x_{2}+x_{3}$
Subject to:

$$
\begin{aligned}
& x_{1}+2 x_{2} \geq 20 \\
& 3 x_{1}+2 x_{2} \geq 50
\end{aligned}
$$

Where x_{1} and x_{2} are non-negative integers.

OR

Apply the principle of duality to solve the LPP:
Max. $Z=3 x_{1}-2 x_{2}$,
Subject to

$$
\begin{aligned}
& x_{1}+x_{2} \leq 5 \\
& x_{1} \leq 4,1 \leq x_{2} \leq 6 \text { and } x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

2. Any two:
(a) Solve the following transformation problem to maximize the profit:

Destinations
Sources $\quad D_{1} \quad D_{2} \quad D_{3} \quad D_{4}$ Supply

| S_{1} | 15 51 42 33
 23
 S_{2} 42 26 81
 S_{3} 44
 90 40 66 60
 33 | 23 31 16 30 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

(b) What is PERT and CPM? Also compare how they are different?
(c) Explain Transportation Problems and Assignment Problems in short. Also differentiate them.
3. Solve any two parts:
(a) Solve the following LPP using dynamic programming-

Maximize $Z=3 x_{1}+4 x_{2}$
Subject to:

$$
\begin{aligned}
& 2 x_{1}+x_{2} \geq 40 \\
& 2 x_{1}+5 x_{2} \leq 180
\end{aligned}
$$

Where $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
(b) Solve the following game-
Player B

Player A
$\left.\begin{array}{l}A_{1} \\ A_{2}\end{array} \begin{array}{cc}B_{1} & B_{2} \\ 3 & 5 \\ 4 & 1\end{array}\right]$
(c) By using dynamic programming, solve the following problem: Minimize $u_{1}^{2}+u_{2}^{2}+u_{3}^{2}$

Subject to $u_{1}+u_{2}+u_{3}=10$
And $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3} \geq 0$.
4. Solve any two:
(a) Discuss simulation with terminology steps and advantages.
(b) Discuss advantages and limitations of integer programming.
(c) Solve the following integer programming problem by using branch and bound method:

Minimize $Z=3 x_{1}+2.5 x_{2}$
Subject to

$$
\begin{aligned}
& x_{1}+2 x_{2} \geq 20 \\
& 3 x_{1}+2 x_{2} \geq 50
\end{aligned}
$$

Where integers, $x_{1}, x_{2} \geq 0$
5. Solve any two:
(a) Discuss the difference in between Linear programming problem and Non-linear programming problem.
(b) Explain about classification of non-linear programming problem.
(c) Find the extreme value of

$$
z=f\left(x_{1}, x_{2}\right)=2 x_{1} x_{2}
$$

Subject to: $x_{1}^{2}+x_{2}^{2}=1$
\qquad

